A Smart Home Agriculture System Based on Internet of Things

VAHID KHALILPOUR AKRAM INTERNATIONAL COMPUTER INSTITUTE, EGE UNIVERSITY

MOHARRAM CHALLENGER UNIVERSITY OF ANTWERP AND FLANDERS MAKE

presented at MECO'2021 and CPSIoT'2021, Budva, Montenegro <u>www.embeddedcomputing.me</u>

Agriculture and safe food generation

- Agriculture and safe food generation are important challenges in human life.
- Producing organic agriculture products has several economic, health and environmental benefits.
- Incorrect irrigation, fertilization and soil preparation process causes undesirable and unhealthy products and waste effort and investment.

Internet of Things

- The opportunity of using the IoT and sensors may improve the efficiency of agricultural activities.
- Recent advances in IoT devices help develop new farming platforms that are more healthy and have shallow environmental impacts.
- We proposes a new home-based agricultural system that allows people to produce agriculture products in small places.
- The proposed system use IoT devices and local area networks to monitor the events and quantities for producing organic and healthy products.

GENERAL ARCHITECTURE OF THE PROPOSED SYSTEM

- The proposed system consists of sensing and processing devices, mobile phones and server computers.
- For the sensing devices, we used ESP-32 modules, which are well-known IoT devices with both WiFi and Bluetooth (BLE) communication capabilities.

GENERAL ARCHITECTURE OF THE PROPOSED SYSTEM

- By placing the ESP-32 devices in the plant's pot, we may sense soil humidity, room temperature, room humidity, and room light.
- To configure the ESP-32 devices, user can connect to the device using a mobile phone over a BLE.
- User provides a WiFi SSID and password that allows the ESP device to send its sensed data to a web server over the Internet.
- User can find the ESP MAC address using a mobile application to register it in the webserver.
- After connecting to the WiFi network, the ESP devices start sensing data and sending them to the webserver.
- The web server also provides a web-based interface for the user to control their sensors and plants.
- The webserver sends the necessary notification and messages to the user based on the sensors' received data.

Implementation Details

The flow diagram of the mobile application

Implementation Details

The flow diagram of embedded programs on ESP.

```
void loop(){
 if(!WiFiConnected){
   BLEScanResults foundDevices;
   foundDevices=pBLEScan->start(2);
   foundDevices.pair();
 if(!WiFiConnected && wifissid!=NULL
     && wifipass!=NULL){
         connectWiFi();
 if(WiFiConnected){
      digitalWrite(LED BUILTIN, HIGH);
      msg=sense();
      send_http(msg);
      digitalWrite(LED BUILTIN, LOW);
 delay(3000);
```


Conclusion and Future Works

- The proposed system uses ESP-32 devices and a set of connected sensors to IO pins of these devices to measure different quantities about the plants' soil and environmental conditions.
- The sensed data are sent to a web server that is running on a cloud.
- Based on the received data the web server may send notification messages to the user's mobile phone.
- As the future works, we plan to
 - automate the required actions, such as irrigation, increasing or decreasing the temperature and humidity, and increasing or decreasing the lights using appropriate actuators.
 - use a fuzzy-based system to determine the sharp limits for the sensed data and making certain decisions based on these limits.

THANK YOU

Q&A

Vahid Khalilpour Akram Vahid.akram@ege.edu.tr